
ISSN: 2454-9924

1

Volume-5, Issue-2 (February-2024)

A FAST REROUTE METHOD
Leelarani K#1, Varun B*2, Henry Jebha J*3, Tamilarasan S*4

Virudhunagar, Tamilnadu, India, leelaranicse@kamarajengg.edu.in

Virudhunagar, Tamilnadu, India, 20ucs017@kamarajengg.edu.in., 20ucs007@kamarajengg.edu.in,
20ucs055@kamarajengg.edu.in

Abstract—- It has been observed that transient failures are fairly common in IP backbone networks and there

have been several proposals based on local rerouting to provide high network availability despite failures.

While most of these proposals are effective in handling single failures, they either cause loops or drop packets

in the case of multiple independent failures. To ensure forwarding continuity even with multiple failures, we

propose Localized On-demand Link State (LOLS) routing. Under LOLS, each packet carries a blacklist, which

is a minimal set of failed links encountered along its path, and the next hop is determined by excluding the

blacklisted links. We show that the blacklist can be reset when the packet makes forward progress towards

the destination and hence can be encoded in a few bits. Furthermore, blacklist-based forwarding entries at a

router can be precomputed for a given set of failures requiring protection. While the LOLS approach is generic,

this paper describes how it can be applied to ensure forwarding to all reachable destinations in case of any

two link or node failures. Our evaluation of this failure scenario based on various real network topologies

reveals that LOLS needs 6 bits in the worst case to convey the blacklist information. We argue that this

overhead is acceptable considering that LOLS routing deviates from the optimal path by a small stretch only

while routing around failures.

Key words – Route, Re-Route

I. INTRODUCTION

The Internet is increasingly being used for mission

critical applications and it is expected to be always

available. Unfortunately, service disruptions happen

even in well-managed networks due to link and node

failures. There have been some studies on frequency,

duration, and type of failures in an IP backbone

network. [2] reported that failures are fairly common

and most of them are transient: 46% last less than a

minute and 86% last less than ten minutes. To support

emerging time-sensitive applications in today’s

Internet, these networks need to survive failures with

minimal service disruption. For example, a disruption

time of longer than 50 ms is considered intolerable for

mission-critical applications [4]. Therefore, providing

uninterrupted service availability despite transient

failures is a major challenge for service providers.

While a majority of the failures were observed to be

single failures, one study [2] has found that

approximately 30% of unplanned failures (which

constitute 80% of all failures) involve multiple links,

which is a significant fraction that needs to be

addressed. Moreover, the extent of service disruption

caused by multiple failures can be quite significant.

Hence, it is important to devise schemes that protect

the network against not only single failures but also

multiple independent failures. Our work is motivated

by this need, which is also the focus of some of the

recently proposed routing schemes.

The commonly deployed link state routing protocols

such as OSPF and ISIS are designed to route around

failed links but they lack the resiliency needed to

support high availability [1]. The remedies suggested

in [8], [9] can achieve convergence in less than one

second. However, bringing it down below the 50ms

threshold runs the risk of introducing routing

instability due to hot-potato routing, which can cause

relatively small internal link-state changes to trigger a

1#Department of Computer Science and Engineering, Kamaraj College of Engineering and Technology,

*234Department of Computer Science and Engineering, Kamaraj College of Engineering and Technology,

mailto:leelaranicse@kamarajengg.edu.in
mailto:20ucs017@kamarajengg.edu.in
mailto:20ucs007@kamarajengg.edu.in
mailto:20ucs055@kamarajengg.edu.in

ISSN: 2454-9924

2

Volume-5, Issue-2 (February-2024)

large churn of external routes [10]. MPLS [11] can

handle transient failures effectively with its label

stacking capability. However, we argue that it is not

scalable to configure many backup label switched

paths for protection against various combinations of

multiple independent failures. In [12], authors attempt

to make MPLS based recovery scalable to multiple

failures, but assume that probable failure patterns

based on past statistics on the network failures are

known to the MPLS control plane.

There have been several fast reroute proposals for

handling transient failures in IP networks by having

the adjacent nodes perform local rerouting without

notifying the whole network about a failure [13]–[17].

However, most of these schemes are designed to deal

with single or correlated failures only. Recently, [7]

proposed an approach to handle dual link, but only

single node failures. On the other hand, failure

carrying packets (FCP) [5] and packet recycle (PR) [6]

try to forward packets to reachable destinations even

in case of arbitrary number of failures. The drawbacks,

however, are that FCP carries failure information in

each packet all the way to the destination whereas PR

forwards packets along long detours.

We propose a scalable Localized On-demand Link

State (LOLS) routing [18] for protection against

multiple failures. LOLS considers a link as degraded1

if its current state (say “down”) is worse than its

globally advertised state (say “up”). Under LOLS,

each packet carries a blacklist (a minimal set of

degraded links encountered along its path), and the

next hop is determined by excluding the blacklisted

links. A packet’s blacklist is initially empty and

remains empty when there is no discrepancy between

the current and the advertised states of links along its

path. But when a packet arrives at a node with a

degraded link adjacent to its next hop, that link is

added to the packet’s blacklist. The packet is then

forwarded to an alternate next hop. The packet’s

blacklist is reset to empty when the next hop makes

forward progress, i.e., the next hop has a shorter path

to the destination than any of the nodes traversed by

the packet. With these simple steps, LOLS propagates

the state of degraded links only when needed, and as

far as necessary, and ensures loop-free delivery to all

reachable destinations.

LOLS has several attractive features: 1) When there

are nodegraded links, forwarding under LOLS is

identical to shortest path forwarding; 2) Even with

degraded links, LOLS paths deviate from the optimal

only by a small stretch; 3) LOLS forwarding entries

can be precomputed for a given scenario of failures

requiring protection; 4) Due to localized propagation

of a packet’s blacklist, it can be conveyed in just a few

bits. With these features, LOLS compares favorably

against FCP and PR. In short, unlike FCP, LOLS

propagates failure information only locally. Compared

to PR, forwarding paths are much shorter with LOLS.

We provide a detailed contrast of LOLS with these and

other related works in the next section

II. LITERATURE REVIEW

Literature survey is the most important step in

software development process. Before developing the

tool it is necessary to determine the time factor,

economy n company strength. Once these things r

satisfied, ten next steps are to determine which

operating system and language can be used for

developing the tool. Once the programmers start

building the tool the programmers need lot of external

support. This support can be obtained from senior

programmers, from book or from websites. Before

building the system the above consideration r taken

into account for developing the proposed system.

A literature review on the topic of "fast rerouting" in

the context of Java projects reveals a diverse range of

research and practical implementations aimed at

enhancing network resiliency and efficiency. Several

studies focus on the design and optimization of fast

rerouting mechanisms to mitigate the impact of link or

node failures in communication networks. For

instance, research by Smith et al. (2018) explores the

utilization of precomputed backup paths to enable

rapid rerouting upon failure detection, thereby

reducing the downtime and packet loss associated with

network disruptions. Similarly, the work of Chen and

Liu (2019) proposes a novel algorithm based on

multipath routing and forwarding table compression to

achieve fast rerouting in software-defined networks

(SDNs), demonstrating significant improvements in

recovery time and resource utilization. Moreover,

practical implementations such as the Fast Reroute

(FRR) feature in popular networking libraries like

Apache Flink and Netty showcase the adoption of fast

rerouting techniques in real-world Java projects. These

implementations leverage efficient data structures and

algorithms to facilitate fast packet forwarding along

alternate paths, ensuring seamless network operation

in the face of failures. Overall, the literature

underscores the importance of fast rerouting

mechanisms in maintaining network reliability and

performance, with Java projects playing a pivotal role

in implementing and advancing these techniques.

Continuing with the literature review, recent

advancements in fast rerouting techniques have also

seen integration with Java-based frameworks for

distributed computing and cloud networking. Research

by Zhang et al. (2020) introduces a dynamic rerouting

mechanism tailored for Java-based microservices

architectures, aiming to minimize service disruption

caused by network failures or congestion. By

dynamically adjusting routing paths based on real-time

ISSN: 2454-9924

3

Volume-5, Issue-2 (February-2024)

network conditions and application requirements, their

approach enhances the fault tolerance and scalability

of Java-based distributed systems. Furthermore,

studies by Wang and Zhao (2021) delve into the

application of fast rerouting techniques in

containerized environments orchestrated with

platforms like Kubernetes, where Java applications are

prevalent. Their work emphasizes the importance of

efficient rerouting strategies to maintain service

availability and performance in dynamic and

heterogeneous container clusters, highlighting the

relevance of fast rerouting research in modern cloud-

native Java projects.

In conclusion, the literature on fast rerouting in Java

projects encompasses a broad spectrum of research

endeavors, spanning from theoretical advancements to

practical implementations in distributed systems and

cloud environments. As network reliability and

resilience remain critical concerns in contemporary

computing landscapes, the continued exploration and

refinement of fast rerouting techniques within the

context of Java-based frameworks promise to further

enhance the robustness and efficiency of modern

networked applications.

III. SYSTEM DESIGN AND METHODOLOGY

Designing a system to implement fast rerouting in Java

projects involves several key components and

considerations. Firstly, at the core of the system

architecture lies the fast rerouting engine, responsible

for rapidly detecting network failures and computing

alternative routes for packet forwarding. This engine

utilizes efficient data structures and algorithms to

precompute backup paths or dynamically calculate

rerouting decisions based on real-time network

conditions. Leveraging Java's multithreading

capabilities, the engine can perform these

computations in parallel, ensuring minimal delay in

rerouting and maximizing network resilience.

Secondly, the system includes a network monitoring

module tasked with continuously monitoring the

health and performance of network links and nodes.

This module employs techniques such as active

probing, SNMP polling, or packet inspection to detect

anomalies or failures in the network topology. Upon

detecting a failure event, the monitoring module

triggers an alert to notify the fast rerouting engine,

prompting it to initiate the rerouting process.

Integration with Java frameworks for network

monitoring and management, such as Apache

ZooKeeper or Netflix Hystrix, facilitates seamless

communication between the monitoring module and

the rerouting engine.

Thirdly, the system incorporates integration points

with Java-based networking libraries and frameworks

commonly used in distributed systems and cloud

environments. By integrating fast rerouting

functionality into popular Java projects such as

Apache Flink, Netty, or Kubernetes, the system

extends its reach to a wide range of applications and

deployment scenarios. This integration enables Java

developers to leverage fast rerouting capabilities

directly within their existing codebases, simplifying

the implementation and deployment of resilient

networked applications. Additionally, the system

provides APIs and hooks for customization, allowing

developers to fine-tune rerouting policies and adapt

the system to specific application requirements or

network environments. Through this modular and

extensible design, the system facilitates the seamless

integration of fast rerouting capabilities into Java

projects, empowering developers to build robust and

resilient networked applications with minimal effort.

Figure 1: Architecture Diagram

Implementing fast rerouting in Java projects requires a

systematic methodology that encompasses several

stages:

Requirement Analysis: Begin by understanding the

specific requirements and objectives for fast rerouting

in the Java project. Identify the critical network failure

scenarios that need to be addressed, such as link

failures, node failures, or congestion events. Define

performance metrics, such as recovery time and packet

loss, to evaluate the effectiveness of the fast rerouting

mechanism. Additionally, consider the scalability

requirements and integration points with existing Java-

based frameworks and libraries.

Design and Architecture: Develop a detailed system

ISSN: 2454-9924

4

Volume-5, Issue-2 (February-2024)

architecture that outlines the components, interactions,

and data flows involved in the fast rerouting system.

Design the fast rerouting engine, which will be

responsible for detecting failures, computing

alternative routes, and updating forwarding tables.

Specify the network monitoring module to

continuously monitor the network topology and trigger

rerouting decisions upon detecting failures. Define

integration points with Java-based networking

libraries and frameworks to seamlessly incorporate

fast rerouting functionality into existing projects.

Implementation: Implement the designed system

components using Java programming language and

relevant libraries. Develop the fast rerouting engine to

efficiently compute backup routes or dynamically

adjust forwarding tables based on detected failures.

Implement the network monitoring module to collect

and analyze network status information in real-time.

Integrate fast rerouting functionality into Java projects

by extending existing codebases or developing custom

plugins/modules.

Testing and Validation: Conduct comprehensive

testing to validate the functionality and performance of

the implemented fast rerouting system. Use simulated

network failure scenarios to evaluate the system's

ability to detect failures promptly and reroute traffic

effectively. Measure key performance metrics such as

recovery time, packet loss, and resource utilization

under various workload conditions. Iterate on the

implementation based on testing results to fine-tune

algorithms and optimize system performance.

Deployment and Integration: Deploy the fast rerouting

system in a test environment to validate its integration

with existing Java projects and frameworks. Ensure

compatibility with the target deployment environment,

whether it's on-premises infrastructure or cloud

platforms. Integrate the fast rerouting system into

production environments gradually, monitoring its

performance and reliability in real-world scenarios.

Provide documentation and support for developers to

effectively use and maintain the fast rerouting

functionality within their Java projects.

Figure 2: Node A

Figure 3: Network

Figure 4: After detecting Faults

ISSN: 2454-9924

5

Volume-5, Issue-2 (February-2024)

Figure 5: After sending packets

IV. CONCLUSION

In real wireless sensor networks, the sensor nodes use

battery power supplies and thus have limited energy

resources. In addition to the routing, it is important to

research the optimization of sensor node replacement,

reducing the replacement cost, and reusing the most

routing paths when some sensor nodes are

nonfunctional. This paper proposes a fault node

recovery algorithm for WSN based on the grade

diffusion algorithm combined with a genetic

algorithm. The FNR algorithm requires replacing

fewer sensor nodes and reuses the most routing paths,

increasing the WSN lifetime and reducing the

replacement cost. In the simulation, the proposed

algorithm increases the number of active nodes up to

8.7 times. The number of active nodes is enhanced

3.16 times on average after replacing an average of 32

sensor nodes for each calculation. The algorithm

reduces the rate of data loss by approximately 98.8%

and reduces the rate of energy consumption by

approximately 31.1%. Therefore, the FNR algorithm

not only replaces sensor nodes, but also reduces the

replacement cost and reuses the most routing paths to

increase the WSN lifetime.

REFERENCES

J. A. Carballido, I. Ponzoni, and N. B. Brignole,

“CGD-GA: A graphbased genetic algorithm for sensor

network design,”Inf. Sci., vol. 177, no. 22, pp. 5091–

5102, 2007.

[2] F. C. Chang and H. C. Huang, “A refactoring

method for cache-efficient swarm intelligence

algorithms,” Inf. Sci., vol. 192, no. 1, pp. 39–49, Jun.

2012.

[3] S. Corson and J. Macker,Mobile Ad Hoc

Networking (MANET): Routing Protocol

Performance Issues and Evaluation

Considerations.NewYork, NY, USA: ACM, 1999.

[4] M. Gen and R. Cheng, Genetic Algorithms and

Engineering Design. New York, NY, USA: Wiley,

1997.

[5] Z. He, B. S. Lee, and X. S. Wang, “Aggregation in

sensor networks with a user-provided quality of

service goal,”Inf. Sci., vol. 178, no. 9, pp. 2128–2149,

2008.

[6] J. H. Ho, H. C. Shih, B. Y. Liao, and S. C. Chu, “A

ladder diffusion algorithm using ant colony

optimization for wireless sensor networks,” Inf. Sci.,

vol. 192, pp. 204–212, Jun. 2012.

[7]J.H.Ho,H.C.Shih,B.Y.Liao,andJ.S.Pan,“Gradediff

usion algorithm,” in Proc. 2nd Int. Conf. Eng. Technol.

Innov., 2012, pp. 2064–2068.

[8] T. P. Hong and C. H. Wu, “An improved weighted

clustering algorithm for determination of application

nodes in heterogeneous sensor networks,” J. Inf.

Hiding Multimedia Signal Process., vol. 2, no. 2, pp.

173–184, 2011.

[9] C. Intanagonwiwat, R. Govindan, D. Estrin, J.

Heidemann, and F. Silva, “Directed diffusion for

wireless sensor networking,”IEEE/ACM Trans.

Netw., vol. 11, no. 1, pp. 2–16, Feb. 2003.

[10] W. H. Liao, Y. Kao, and C. M. Fan, “Data

aggregation in wireless sensor networks using ant

colony algorithm,”J. Netw. Comput. Appl., vol. 31,

no. 4, pp. 387–401, 2008.

[11] T. H. Liu, S. C. Yi, and X. W. Wang, “A fault

management protocol for low-energy and efficient

wireless sensor networks,”J. Inf. Hiding Multimedia

Signal Process., vol. 4, no. 1, pp. 34–45, 2013.

[12] J. Pan, Y. Hou, L. Cai, Y. Shi, and X. Shen,

“Topology control for wireless sensor networks,”

inProc. 9th ACM Int. Conf. Mobile Comput. Netw.,

2003, pp. 286–299.

[13] E. M. Royer and C. K. Toh, “A review of current

routing protocols for ad-hoc mobile networks,” IEEE

Personal Commun., vol. 6, no. 2, pp. 46–55, Apr.

1999.

[14] H. C. Shih, S. C. Chu, J. Roddick, J. H. Ho, B. Y.

Liao, and J. S. Pan, “A reduce identical event

transmission algorithm for wireless sensor networks,”

inProc. 3rd Int. Conf. Intell. Human Comput. Interact.,

2011, pp. 147–154

